## Using Deep Learning to Estimate Multiple Song Tempos

THIS IS A DUCK
(facing left)

THIS IS
ALSO
A RABBIT
(facing right)


## ONE SONG CAN HAVE MORE THAN ONE TEMPO

## EVEN IF THE TEMPO DOESN’T CHANGE DURING THE SONG

Jackson 5
"I Want You Back"
100 Beats per Minute $f$.
Good for typical walking pace


Jackson 5
"I Want You Back"
200 Beats per Minute , 1 .
Good for brisk running pace


Sometimes unreliable.
Generally produce only one answer.

Try to devise one that will be more reliable and can give more than one answer when appropriate

## The Data

My MP3 collection:
about 150 audio files one song each,
hand-labelled with 1,2, or 3 tempos each

The Methods
Whel Spectrogram computed by LibROSA

- Convolutional Neural Network



## CHALLENGES

Not enough data
What loss function to use for multiple tempos?

Some songs change tempo
How to represent data to generate features

Cut off beginning and end of each song (since many have tempo changes there).

Drop songs with tempo changes in the middle.

MAKING TRAINING DATA

Create training examples by taking multiple random samples from each song. few->many

Use peaks of LibROSA tempogram() function as "candidate tempos"
© Each sample gets assigned a candidate tempo (randomly chosen from those peaks)

Simple binary loss: Is candidate tempo close to one of the hand-labeled tempos?


THEN USE THE STACKED DATA AS INPUT TO A 2-DIMENSIONAL CONVOLUTIONAL NEURAL NETWORK

## How the data look

## Distribution of Raw Data



## Transformed Data




FOR
POSITIVE (CORRECT) CASES, EACH BLOCK OF DATA SHOULD HAVE A CONSISTENT VERTICAL PATTERN, AS
 BEATS GET REPEATED


Negative case, preprocessed:


Positive case, preprocessed:


Here the spectrogram is divided into 4 sections, with the lowest pitches in purple and the highest in red. These cases are fairly typical. In the negative case, as expected, there are no clear patterns. In the positive case, there are almost-vertical patterns, but they are downward-sloping.



## average variance

The positive (red) cases, as expected, tend to have high average correlation and low average variance. The negative (black) cases are more broadly distributed, but they are more common elsewhere.


## The Neural Network

Output Sigmoid Dense(20) Dropout(:8)
$1 \times 4$ Convolution, 3 filters
Batch Norm
$4 \times 6$ Convolution, 25 filters
Dropout(.3)
$1 \times 4$ Convolution, 12 filters
Batch Norm
1x1. Convolution, 32 filters
Dropout(.1)
1xt $60 n v o l u t i o n, 64$ filters
Input: $16 \times 16,128$ channels

Narrow convolutions ( $1 \times 4$ and $4 \times 6$ ) instead of square convolutions

Alternating batch normalization and dropout between successive convolutions

Very high dropout before top layer

## RESULTS

Validation accuracy 0.91 (after 60 epochs using final version of model)

This is quite good, considering that many cases are ambiguous

## EXAMPLE RESULTS

## 53rdAnd3rdMP 45

Predicted: 0.00090704486 Actual: False

AHardRainsAGonnaFall 56
Predicted: 0.021726133 Actual: False

AHardRainsAGonnaFall 62
Predicted: 0.017301498 Actual: True

InTheHillsOfShiloh 64
Predicted: 0.13423629 Actual: False

CaliforniaDreamin2MP 112
Predicted: 0.93683857 Actual: True

## NEXT STEPS So, so many: for example

(o) Look at results per song. Subjectively, how does model do at getting correct paces? Are typical failures legitimately ambiguous cases, or is the model really missing something?
() Get data from other human labelers.
(0) Get more data for underrepresented genres (and time signatures). And a greater variety of artists.
....and so on

See https://github.com/andyharless/paces/blob/master/README.md
 github.com/andyharless

