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The purpose of the project was to use machine learning to find the paces (tempos) consistent 
with a given song (input as an MP3 file). What made this different from ordinary tempo 
estimation is that it allowed for multiple compatible paces: for example, a song nominally 
clocked at 200 beats per minute, but with those beats consistently in groups of 2, would be 
compatible with 100 bpm pace as well.  (The project was motivated by my own experience 
using music to keep the pace for jogging/walking/running/marching, and the realization that 
using mutually exclusive lists of songs classified by tempo was an imperfect solution.) 
 
The input data consisted of my own MP3 collection, along with multiple hand labels that I 
entered for each song, based on tapping out the beat at different tempos and deciding 
subjectively which ones felt right.  (Typical songs had 2 or 3 labels, but a few had only one.) 
The input data presented several problems: 
 

- There wasn’t much of it. If each song was to be treated as a separate training case, I 
didn’t have enough to fit a meaningful machine learning model. 
 

- It wasn’t obvious what the appropriate loss function would be: you want to maximize the 
number of correct labels but penalize duplication (i.e., labels too close together) and 
incorrect labels. The idea of defining and assigning weights to these 3 objectives 
seemed too subjective and arbitrary. 
 

- Some songs had inconsistent tempos, especially at the beginning and the end. 
 

- How should I represent the data from a song to generate features for machine learning? 
 

I solved the first two issues by redefining the problem: instead of training a model to generate a 
set of tempos for each song, I would train it to classify a candidate tempo, associated with a clip 
from a song, as either correct or incorrect. I used a music analysis library (LibROSA) to 
generate a set of candidate tempos for each song, then I selected random clips from each song 
to use as training data. Since the clips began at random points in the song, each clip from a 
given song had a different phase relative to where the beats would be at the candidate tempo, 
so the model would perceive each clip as being different, even if the song itself were repetitive. 
Thus I was able to generate a large set of training data from a small set of songs. 
 
To address the third issue, I just cut off the beginning and end of each song and threw out any 
songs that had significant tempo shifts in the middle. 
 



I chose to represent the data using mel spectrograms generated by LibROSA, which generates 
a 128-dimensional time series of spectra.  I realized, however, that the periodic nature of beats 
makes the relevant time coordinates themselves 2-dimensional.  Much as one might, in 
searching for diurnal patterns, stack each day’s time series on top of the previous day’s, I made 
a stack of beat quanta.  Thus one time dimension represented the immediate passage of time 
associated with a given (hypothetical) beat, and the other represented the passage of time 
between successive (hypothetical) beats.  
 
I also resampled each clip to make them all the same size. (The clips were selected to represent 
a constant number of beats at the candidate tempo, so the raw lengths were different depending 
on that candidate tempo.)  The input data for a each case now consisted of a 3-dimensional 
tensor, with one dimension representing the spectrum, one representing time within a beat 
quantum, and one representing time between beats. 
 
I modeled the data using a convolutional neural network, with the spectral frequencies treated 
as separate channels of 2-dimensional matrix.  The initial convolutions were 1x1, to reduce the 
dimensionality of the spectrum.  The subsequent convolutions were narrow.  That is, though the 
input data happened (arbitrarily) to be square (16x16), I found that 1x4 and 4x6 convolutions 
worked better than square ones.  Per common practice, I used a dense layer on top.  I found 
that using a lot of dropout (0.8) at the top layer improved performance.  The relatively simple 
structure of the model allowed me to implement it using the Keras Sequential API. 
 
I made an interesting discovery about CNN modeling. (Perhaps this is known, but I didn’t know 
it.) It seems (at least for this problem) that alternating between (spatial) dropout and batch 
normalization between successive convolutional layers works better than using either one 
consistently. 
 
This project is still a work in progress, but the latest version gets about 91% validation accuracy. 
(Validation uses a separate set of songs from training, so as to minimize leakage.)  I have yet to 
try the model on a clean test set, and I have only taken a quick, casual look at per-song 
performance (as opposed to per-validation-case performance).  I also haven’t looked at better 
measures of performance yet, but a casual look at the results suggests that the model is making 
good discriminations rather than just favoring the modal class.  Given that many of the cases 
are ambiguous, 91% accuracy, if it pans out, will be quite good performance.  The repo is public 
(https://github.com/andyharless/paces), in case anyone wants to look more closely. 
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